皇冠网址-皇冠网游一分钱发货_百家乐过滤工具_全讯网送6 (中国)·官方网站

12月15日 馮衍全教授學(xué)術(shù)報(bào)告(數(shù)學(xué)與統(tǒng)計(jì)學(xué)院)

來源:數(shù)學(xué)行政作者:時(shí)間:2024-12-12瀏覽:75設(shè)置

報(bào) 告 人:馮衍全 教授

報(bào)告題目:Semiregular and quasi-semiregular automorphisms of digraphs

報(bào)告時(shí)間:2024年12月15日(周日)下午3:00

報(bào)告地點(diǎn):靜遠(yuǎn)樓1508會(huì)議室

主辦單位:數(shù)學(xué)與統(tǒng)計(jì)學(xué)院、數(shù)學(xué)研究院、科學(xué)技術(shù)研究院

報(bào)告人簡(jiǎn)介:

       馮衍全,北京交通大學(xué)二級(jí)教授,自1997年獲北京大學(xué)理學(xué)博士學(xué)位以來,一直從事代數(shù)與組合,群與圖以及互連網(wǎng)絡(luò)方面研究。現(xiàn)任中國(guó)工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會(huì)理事、中國(guó)數(shù)學(xué)會(huì)理事等,代數(shù)組合JACO等雜志編委。2010年主持《圖的對(duì)稱性》獲教育部?jī)?yōu)秀成果二等獎(jiǎng),2011年獲政府特殊津貼。共發(fā)表SCI科研論文150余篇,主持完成國(guó)家自然科學(xué)基金10余項(xiàng),包括重點(diǎn)項(xiàng)目1項(xiàng)。正在承擔(dān)國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目1項(xiàng)、面上項(xiàng)目1項(xiàng)、國(guó)際合作研究項(xiàng)目1項(xiàng)。

報(bào)告摘要:

       Let G be a permutation group on a finite set Omega . An non-identity element g in G is said to be semiregular if every cycle in the unique cycle decomposition of g has the same length, and quasi-semiregular if g has an unique 1-cycle in the cycle decomposition of g and every other cycle has the same length. An automorphism of a digraph is called semiregular or quasi-semiregular if it is a semiregular or quasi-semiregular permutation on the vertex set of the digraph. The permutation group G is called 2-closed if G is the largest subgroup of the symmetric group S_Omega on Omega with the same orbits as G on Omega× Omega.

       In 1981 Fein, Kantor and Schacher proved that a transitive permutation group on a finite set with degree at least 2 has an element of prime-power order with no fixed point, but may not have a semiregular element. In the same year, Marusic conjectured that every finite vertex-transitive digraph has a semiregular automorphism, and in 1995, Klin proposed the well-known Polycirculant Conjecture: Every 2-closed transitive permutation group has a semiregular element. Note that the automorphism group of any digraph is 2-closed. In 2013, Kutnar, Malnic, Martanez and Marusic proposed the quasi-semiregular automorphism of a digraph and investigated strongly regular graphs with such an automorphism.

        A lot of work relative to semiregular or quasisemiregular automorphisms of digraphs has been done and in this talk, we review some progress on this line. Furthermore, we talk about a recent work by Yin, Feng, Zhou and Jia [Journal of Combinatorial Theory B 159 (2023) 101-125] on prime-valent symmetric graphs with a quasi-semiregular automorphism.



返回原圖
/

百家乐必胜| 全讯网新宝2| 百家乐策略与心得| 百家乐官网翻天粤语下载| 大发888博彩娱乐城| 百家乐tt赌场娱乐网规则| 海立方百家乐官网的玩法技巧和规则| 百家乐官网庄家提成| 临武县| 揭东县| 兖州市| 涟水县| 开鲁县| 肯博88国际| 大发888娱乐平台 游戏| 全讯网3| 大发888娱乐城网页版| 威尼斯人娱乐城首选d77com| 川宜百家乐分析软件| 杨公风水24山分金水法| 女性做生意的风水| 百家乐官网筹码14克| 百家乐官网那里可以玩| 做生意必须看风水吗| 赌博百家乐赢不了| 百家乐视频游戏账号| 澳门百家乐单注下限| 线上百家乐官网怎么玩| 风水8闰24山| 澳门百家乐21点| 百家乐分析软件骗人| 真钱百家乐开户试玩| 百家乐tt娱乐场| 百家乐官网游戏| 老虎机加分器| 大发888如何注册送58| 龙博线上娱乐| 安义县| 澳门百家乐官网玩法心得技巧 | 马牌百家乐官网现金网| 可以玩百家乐官网的博彩公司|