皇冠网址-皇冠网游一分钱发货_百家乐过滤工具_全讯网送6 (中国)·官方网站

11月16日 張翼教授學術報告(數學與統計學院)

來源:數學行政作者:時間:2023-11-13瀏覽:280設置

報 告 人:張翼 教授 

報告題目:The application of bidifferential calculus in integrable systems

報告時間:2023年11月16日(周四)下午4:30

報告地點:靜遠樓1506學術報告廳

主辦單位:數學與統計學院、數學研究院、科學技術研究院 

報告人簡介:

       張翼,浙江師范大學數學科學學院教授,博士生導師,浙江師范大學動力系統與非線性科學研究中心主任。浙江省應用數學研究會副監事長;中國優選法統籌法與經濟數學研究會理事;國家科學技術獎自然科學獎以及多個省市自然科學獎評審專家;科技部數學專項、教育部學位中心評審專家。主要研究方向為孤立子理論與可積系統。曾在美國南佛羅里達大學、阿拉巴馬大學、香港中文大學、日本九州大學等多所大學訪問。主持過多項國家自然科學基金項目及浙江省自然科學基金研究項目;獲得過浙江省科學技術進步獎一等獎和浙江省人民政府優秀教學成果二等獎。在SCI 源刊雜志上發表論文150余篇。

報告摘要:

       In this talk, in the framework of bidifferential calculus, we investigate the Manakov system via a matrix version of the binary Darboux transformation which involves a Lyapunov equation. With a spectral matrix of the form of diagonal and vanishing seed solutions, the corresponding matrix solution of the Lyapunov equation is given, which can contain zero entries, which should be helpful for further explorations of the solutions of equations with this method. From vanishing and nonvanishing seed solutions, abundant soliton solutions are provided corresponding to a spectral matrix of the form of a Jordan block. In particular, based on the properties of nilpotent matrices, we construct the semirational rogue wave solutions, which can demonstrate the coexistence of rational rogue wave and bright/dark soliton.



返回原圖
/

百家乐平台| 新世纪百家乐官网的玩法技巧和规则 | 狮威百家乐官网的玩法技巧和规则 | 百家乐都是什么人玩的| 南京百家乐官网赌博现场被 | 百家乐群shozo| 大发888娱乐城维护| 苗栗市| 百家乐开户代理| 大发888娱乐场下载ypu rd| 百家乐官网赌博筹码| 百家乐赌场破解| 康保县| 历史百家乐路单图| 长治县| 百家乐猜大小规则| 澳门百家乐官网职业赌客| 波克棋牌免费下载| 送现金百家乐官网的玩法技巧和规则| 大发888游戏平台888| 墓地附近做生意风水| 网上真钱赌博网站| 威尼斯人娱乐平台| 百家乐视频下载| 百家乐官网赌博机有鬼吗| 太阳城假网| 网上百家乐官网群的微博| 百家乐官网发牌铲| 百家乐梅花图标| 百家乐官网實戰後二穩賺| 总统线上娱乐城| 百家乐庄闲| 诺贝尔百家乐官网的玩法技巧和规则| 双江| 刀把状的房子做生意| 百家乐官网下对子的概率| 威尼斯人娱乐城怎么玩| 百家乐连长| 任你博百家乐现金网| 百家乐官网赌场老千| 大发888在线服务|