皇冠网址-皇冠网游一分钱发货_百家乐过滤工具_全讯网送6 (中国)·官方网站

10月14日 常晉源教授學術報告(數學與統計學院)

來源:數學行政作者:時間:2023-10-13瀏覽:333設置

報 告 人:常晉源 教授

報告題目:Statistical Inference for High-Dimensional Spectral Density Matrix

報告時間:2023年10月14日(周六上午11:10 )

報告地點:江蘇師范大學數學與統計學院學術報告廳(靜遠樓1506室)

主辦單位:數學研究院、數學與統計學院、科學技術研究院

報告人簡介:

       常晉源,西南財經大學光華特聘教授、中科院數學與系統科學研究院研究員,主要從事“超高維數據分析”和“高頻金融數據分析”相關的工作,正擔任Journal of the American Statistical Association, Journal of Business & Economic Statistics以及Statistica Sinica的Associate Editor。

報告摘要:

       The spectral density matrix is a fundamental object of interest in time series analysis, and it encodes both contemporary and dynamic linear relationships between component processes of the multivariate system. In this paper we develop novel inference procedures for the spectral density matrix in the high-dimensional setting. Specifically, we introduce a new global testing procedure to test the nullity of the cross-spectral density for a given set of frequencies and across pairs of component indices. For the first time, both Gaussian approximation and parametric bootstrap methodologies are employed to conduct inference for a high-dimensional parameter formulated in the frequency domain, and new technical tools are developed to provide asymptotic guarantees of the size accuracy and power for global testing. We further propose a multiple testing procedure for simultaneously testing the nullity of the cross-spectral density at a given set of frequencies. The method is shown to control the false discovery rate. Both numerical simulations and a real data illustration demonstrate the usefulness of the proposed testing methods.



返回原圖
/

资中县| 兴国县| 大发888注册步骤| 筹码百家乐官网500| 赌博百家乐技巧| 百家乐官网玩法有技巧| 神人百家乐赌场| 好用百家乐官网分析软件| 最佳场百家乐的玩法技巧和规则| 百家乐官网正反投注| 网页棋牌游戏| 赌百家乐心里技巧| 论坛| 威尼斯人娱乐场28gxpjwnsr| 百家乐官网游戏图片| 云顶国际娱乐| 百苑百家乐的玩法技巧和规则| 百家乐官网打大必赢之法| 东方太阳城三期琴湖湾| 2024年九运| 赌博百家乐官网的路单| 百家乐制胜法| 网上赌百家乐有假| 博狗百家乐官网的玩法技巧和规则 | 百家乐官网天下| 百家乐官网输一压二| 威尼斯人娱乐城网| 最新百家乐游戏机| 百家乐官网下| 百家乐官网必胜下注法| 赌场百家乐作弊| 做生意的怎样招财| 百家乐官网棋牌交友| 景德镇市| 新利网上娱乐| 大发888娱 太阳城| 真人百家乐怎么玩| 澳门百家乐庄闲的玩法| 曼哈顿百家乐官网的玩法技巧和规则| 百家乐官网开户最快的平台是哪家| 夏河县|