皇冠网址-皇冠网游一分钱发货_百家乐过滤工具_全讯网送6 (中国)·官方网站

4月28日 楊文革研究員學術報告(物理與電子工程學院)

來源:物電學院作者:時間:2025-04-25瀏覽:97設置

報告人:楊文革

報告題目:Retaining the enhanced properties with pressure-induced lattice and electronic transitions to ambient conditions

報告時間:2025年4月28日(周一)1030

報告地點:分析測試中心100會議室

主辦單位:物理與電子工程學院、科學技術研究院

報告人簡介:

楊文革,1995年畢業于武漢大學物理系,獲理學博士。1995-1997洪堡學者在于利希研究中心合作研究準晶的結果與缺陷1997-2013 先后在美國卡內基-梅隆大學、橡樹嶺國家實驗室、卡內基研究院做博士后客座研究員、研究員等職。2024年回國全職加入北京高壓科學研究中心,入選國家級創新人才長期項目,任職研究員至今2022起擔任北京高壓科學研究中心法人、主任。長期從事材料在極端條件下物質的結構與物性的探索,開發同步輻射在高壓條件下的研究,發表300余篇SCI學術論文。

報告摘要:

Pressure is an effective tool to tune the crystal and electronic structures of materials, which turns out with large property modulation. With a proper kinetical energy phase transition pathway, the tailored properties achieved at high pressure could be retained to ambient pressure for industry applications. Here we want to focus on two systems to demonstrate the great potential for pressure engineered materials with enhanced properties. 1)Transparent conducting oxides (TCO) with high electrical conductivity and high visible light transparency are desired for a wide range of high-impact engineering. Here, we demonstrate the pressure engineering strategy to modulate the lattice and electronic and optical properties on an indium titanium oxides (ITiO) TCO. Strikingly, after compressiondecompression treatment on the ITiO, a highly transparent and metastable phase with two orders of magnitude enhancement in conductivity is synthesized from an irreversible phase transition. Moreover, this phase possesses previously unattainable filter efficiency on hazardous blue light up to 600 °C, providing potential for healthcare-related applications with strong thermal stability up to 200 °C. 2) Multiferroic ferroelectric photovoltaic (FPV) materials, which integrate magnetic and ferroelectric properties, are of paramount importance for optoelectronic and photovoltaic applications. We choose the multiferroic material BaFe4O7 with a unique FeO4 tetrahedral and FeO6 octahedral interleaving arrangement. We witness that pressure induces charge transfer from Fe in the tetrahedral sites to Fe in the octahedral sites, leading to charge disproportionation that narrows the bandgap from 2.12 eV to 0.53 eV, positioning it within the optimal range for photovoltaic applications. Simultaneously, pressure-induced polar distortion in the FeO6 octahedron enhances the symmetry breaking of the lattice, resulting in a threefold increase in ferroelectric polarization at pressures between 20-25 GPa. This concurrent modulation of the bandgap and ferroelectric polarization leads to a twofold enhancement in ferroelectric photocurrent. Remarkably, the optimized bandgap (1.42 eV) and enhanced polarization remain stable upon releasing the pressure to ambient conditions. From these two case studies, we present the great potential for enhancing electric, optical, energy harvest performance via pressure-induced electronic structure and crystal structure, offering a promising avenue for the development of high-performance, functional materials.


返回原圖
/

大发888游戏官网| 平原县| 百家乐透视牌靴| 威尼斯人娱乐场官网是骗人的吗| 缅甸百家乐官网网上投注| 真钱百家乐公司哪个好| 凤凰百家乐官网娱乐城| 百家乐tt赌场娱乐网规则| 百家乐官网的弱点| 烟台市| 百家乐网络赌博真假| 网络百家乐官网电脑| 欧华娱乐| 百家乐有没有单机版的| 百家乐官网的各种打法| 皇冠真钱| 金木棉百家乐的玩法技巧和规则| 网上百家乐官网游戏哪家信誉度最好 | 威尼斯人娱乐平台赌| 澳门百家乐赢钱秘| 静乐县| 百家乐永利娱乐场开户注册| 24山分金周天度数| 百家乐官网五湖四海娱乐场 | 百家乐电子游戏试| 百家乐玩法百科| 百家乐官网永利娱乐场| 江川县| 一二博网址| 大发888娱乐场下载com| 百家乐三珠连跳打法| 精通百家乐官网的玩法技巧和规则 | 百家乐赌局| 百家乐怎么推算| 百家乐官网游戏台| 威尼斯人娱乐城--老品牌值得您信赖 | 大发888黄金版娱乐场| 芝加哥百家乐的玩法技巧和规则| 足球百家乐官网系统| 百家乐官网的玩法技巧和规则 | bet365体育投注提款要几天|